A rope of length 18 feet is arranged in the shape of a sector of a circle with central angle O radians, as shown in the
accompanying figure. Write the area of the sector. A as a function of ​

Respuesta :

Answer:

[tex]A(\theta)=\frac{162 \theta}{(\theta+2)^2}[/tex]

Step-by-step explanation:

The picture of the question in the attached figure

step 1

Let

r ---> the radius of the sector

s ---> the arc length of sector

Find the radius r

we know that

[tex]2r+s=18[/tex]

[tex]s=r \theta[/tex]

[tex]2r+r \theta=18[/tex]

solve for r

[tex]r=\frac{18}{2+\theta}[/tex]

step 2

Find the value of s

[tex]s=r \theta[/tex]

substitute the value of r

[tex]s=\frac{18}{2+\theta}\theta[/tex]

step 3

we know that

The area of complete circle is equal to

[tex]A=\pi r^{2}[/tex]

The complete circle subtends a central angle of 2π radians

so

using proportion find the area of the sector by a central angle of angle theta

Let

A ---> the area of sector with central angle theta

[tex]\frac{\pi r^{2} }{2\pi}=\frac{A}{\theta} \\\\A=\frac{r^2\theta}{2}[/tex]

substitute the value of r

[tex]A=\frac{(\frac{18}{2+\theta})^2\theta}{2}[/tex]

[tex]A=\frac{162 \theta}{(\theta+2)^2}[/tex]

Convert to function notation

[tex]A(\theta)=\frac{162 \theta}{(\theta+2)^2}[/tex]

Ver imagen calculista