Respuesta :
Answer:
x - y = 3
2x - y = 2
Step-by-step explanation:
x = 3 + y
2(3 + y) - y = 2
6 + 2y - y = 2
y = 2 - 6
y = -4
x = 3 + (-4)
x = 3 - 4
x = -1
Verified
A consistent and independent system of equations has exactly one solution.
A possible system of equation is: [tex]\mathbf{-4x - 3y = 16}[/tex] and [tex]\mathbf{x -y =3}[/tex]
The solutions are given as:
[tex]\mathbf{(x,y) = (-1, -4)}[/tex]
The general equation is given as:
[tex]\mathbf{Ax + By = C}[/tex]
Substitute values for x and y
[tex]\mathbf{-A - 4B = C}[/tex]
Assume A = 1 and C = 3
So, we have:
[tex]\mathbf{-1 - 4B = 3}[/tex]
Collect like terms
[tex]\mathbf{- 4B = 3+1}[/tex]
[tex]\mathbf{- 4B = 4}[/tex]
Divide both sides by -4
[tex]\mathbf{B = -1}[/tex]
Substitute [tex]\mathbf{B = -1}[/tex], A = 1 and C = 3 in [tex]\mathbf{Ax + By = C}[/tex]
[tex]\mathbf{x -y =3}[/tex]
Also, we have:
[tex]\mathbf{-A - 4B = C}[/tex]
Assume A = -4 and C = 16
So, we have:
[tex]\mathbf{4 - 4B = 16}[/tex]
Collect like terms
[tex]\mathbf{- 4B = 16 - 4}[/tex]
[tex]\mathbf{- 4B = 12}[/tex]
Divide both sides by -4
[tex]\mathbf{B = -3}[/tex]
Substitute [tex]\mathbf{B = -3}[/tex], A = -4 and C = 16 in [tex]\mathbf{Ax + By = C}[/tex]
[tex]\mathbf{-4x - 3y = 16}[/tex]
Hence, a possible system of equation is:
[tex]\mathbf{-4x - 3y = 16}[/tex] and [tex]\mathbf{x -y =3}[/tex]
Read more about consistent and independent system of equations at:
https://brainly.com/question/16204664