Respuesta :
Here are the answer: a) R = 3.6 and b) A = 2
Step-by-step explanation:
Given,
R is inversely proportional to A.
R ∝ [tex]\frac{1}{A}[/tex]
so, R = [tex]\frac{k}{A}[/tex] -------eq 1 where k is any constant
To find the values of a) R when A = 5 and
b) Value of A when R = 9
Now,
Putting R = 12 and A = 1.5 in eq 1 we get,
12 = [tex]\frac{k}{1.5}[/tex]
or, k = 12×1.5 = 18
From eq 1 we get,
R = [tex]\frac{18}{A}[/tex] --------- eq 2
Now,
a) Putting A= 5 in eq 2 we get,
R = [tex]\frac{18}{5}[/tex] = 3.6
b) Putting R = 9 in eq 2 we get
R = [tex]\frac{18}{A}[/tex]
or, A = [tex]\frac{18}{9}[/tex] = 2
Answer:
a.3.6
b. 2
Step-by-step explanation:
R is inversely proportional to A
Which means R=k/A
Cross multiply
k=RA
Since R=12
A=1.5
So k=12×1.5
=18
a. We are to determine the value for R
So R=k/A
=18/5
=3.6
b.we are to determine the value for A
So R=k/A
A=k/R
=18/9
=2