aldas7
contestada

With which values ​​of the argument the function acquires a value equal to144
[tex]y = \frac{1}{9x {}^{2} } [/tex]

Respuesta :

Answer:

[tex]x=\frac{1}{36} \, \,and\,\, x=-\frac{1}{36}[/tex]

Step-by-step explanation:

To find at which values of the argument the function renders 144, we need to solve for "x" in the equation when y is 144:

[tex]y=\frac{1}{9\,x^2}\\144=\frac{1}{9\,x^2}\\144\,x^2=\frac{1}{9} \\x^2=\frac{1}{9\,(144)} \\x^2=\frac{1}{1296} \\x=+/-\sqrt{\frac{1}{1296} } \\x=+/-\frac{1}{36}[/tex]

Therefore there are two solutions: one is 1/36 and the other one is its opposite; -1/36

Answer:

Step-by-step explanation:

hello :

solve : 1/9x² = 144

x² = 144×9

x² =(12×3)²    means : x² =36²

so : x=36 or x= -36