Respuesta :

Given:

Perpendicular line:

[tex]$m(r)=-\frac{2}{3} r-3[/tex]

[tex]f(-2)=-9[/tex]

To find:

The equation of the linear function f.

Solution:

[tex]$m(r)=-\frac{2}{3} r-3[/tex]

Slope of line m is = [tex]-\frac{2}{3}[/tex]

If two lines are perpendicular then the slope of one equation is negative reciprocal of the other.

Slope of line f = [tex]\frac{3}{2}[/tex]

[tex]f(-2)=-9[/tex]

This means f has point (-2, -9).

Using point-slope formula:

[tex]y-y_1=m(x-x_1)[/tex]

Here [tex]x_1=-2, y_1=-9[/tex] and [tex]m=\frac{3}{2}[/tex]

[tex]$y-(-9)=\frac{3}{2} (x-(-2))[/tex]

[tex]$y+9=\frac{3}{2} (x+2)[/tex]

[tex]$y+9=\frac{3}{2} x+\frac{3}{2} \cdot 2[/tex]

[tex]$y+9=\frac{3}{2} x+3[/tex]

Subtract 9 from both sides.

[tex]$y+9-9=\frac{3}{2} x+3-9[/tex]

[tex]$y=\frac{3}{2} x-6[/tex]

Substitute x = r and y = f.

[tex]$f(r)=\frac{3}{2} r-6[/tex]

The linear equation is [tex]f(r)=\frac{3}{2} r-6[/tex].