Respuesta :

Given:

Table for the linear function k.

To find:

The equation for the function.

Solution:

Take any two points from the table.

Let the points are (10, 18) and (30, 58).

Slope of the line:

[tex]$m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Here, [tex]x_1=10, y_1=18, x_2=30, y_2=58[/tex]

[tex]$m=\frac{58-18}{30-10}[/tex]

[tex]$m=\frac{40}{20}[/tex]

m = 2

Using point-slope formula:

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y-18=2(x-10)[/tex]

[tex]y-18=2x-20[/tex]

Add 18 on both sides.

[tex]y-18+18=2x-20+18[/tex]

[tex]y=2x-2[/tex]

Replace x by c and y by k.

[tex]k=2c-2[/tex]

The slope-intercept form of the equation of the function is k = 2c - 2.

Answer:

Given:

Table for the linear function k.

To find:

The equation for the function.

Solution:

Take any two points from the table.

Let the points are (10, 18) and (30, 58).

Slope of the line:

Here,

m = 2

Using point-slope formula:

Add 18 on both sides.

Replace x by c and y by k.

The slope-intercept form of the equation of the function is k = 2c - 2.

Step-by-step explanation: