Respuesta :

Answer:

The ratio  [tex]\frac{3}{4}[/tex] represents the tangent of ∠I

Step-by-step explanation:

Let us revise the trigonometry ratio

  • sin Ф =  [tex]\frac{opposite}{hypotenuse}[/tex]
  • cos Ф =  [tex]\frac{adjacent}{hypotenuse}[/tex]
  • tan Ф =  [tex]\frac{opposite}{adjacent}[/tex]

In Δ HIJ

∵ m∠J = 90°

- Hypotenuse is the side which opposite to the right angle

∴ HI is the hypotenuse

∵ HJ = 3 units

∵ IH = 5 units

- Let us use Pythagoras Theorem to find HJ

∵ (HJ)² + (IJ)² = (IH)²

∴ 3² + (IJ)² = 5²

∴ 9 + (IJ)² = 25

- Subtract 9 from both sides

∴ (IJ)² = 16

- take √  for both sides

IJ = 4 units

To find the tangent of ∠I find the opposite and adjacent sides to it

∵ HJ is opposite to ∠I

∵ IJ is adjacent to ∠I

- use the rule of tan above

∴ tan(∠I) = [tex]\frac{HJ}{IJ}[/tex]

∴ tan(∠I) = [tex]\frac{3}{4}[/tex]

The ratio  [tex]\frac{3}{4}[/tex] represents the tangent of ∠I

Answer:

3/4

Step-by-step explanation: