Respuesta :

Answer:

Option d. [tex]sin(x)=\frac{1}{2}[/tex]

Step-by-step explanation:

The complete question is

Given (1+cosx)/(sinx) + (sinx)/(1+cosx) =4, find a numerical value of one trigonometric function of x.

a. tanx=2

b. sinx=2

c. tanx=1/2

d. sinx=1/2

we have

[tex]\frac{1+cos(x)}{sin(x)}+\frac{sin(x)}{1+cos(x)}=4[/tex]

Find the common denominator and adds the fractions

[tex]\frac{(1+cos(x))^2+sin^2(x)}{(1+cos(x))sin(x)}=4[/tex]

Expanded the numerator

[tex]\frac{(1+2cos(x)+cos^2(x)+sin^2(x)}{(1+cos(x))sin(x)}=4[/tex]

Remember that

[tex]sin^2(x)+cos^2(x)=1[/tex] ----> trigonometric identity

substitute

[tex]\frac{1+2cos(x)+1}{(1+cos(x))sin(x)}=4[/tex]

[tex]\frac{2+2cos(x)}{(1+cos(x))sin(x)}=4[/tex]

Factor 2 in the numerator

[tex]\frac{2(1+cos(x))}{(1+cos(x))sin(x)}=4[/tex]

Simplify

[tex]\frac{2}{sin(x)}=4[/tex]

[tex]sin(x)=\frac{1}{2}[/tex]

Answer:

D

Step-by-step explanation:

guy above