Respuesta :

JDK-right triangle. JD=13, DK=3

By the Pythagorean theorem

[tex]13^2+3^2=JK^2\\JK=\sqrt{169+9} \\JK=\sqrt{178} \\[/tex]

JK≈13,34

Answer: the distance is 13 units

P.S. Hello from Russia

Ver imagen nktselepov

The distance between two points J and K is 13 unit (approx)

Step-by-step explanation:

Given,

Two points are J(3,0) and k(6,-13).

To find the distance between J and K.

Formula

The distance between two points ([tex]x_{1} ,y_{1}[/tex]) and ([tex]x_{2} ,y_{2}[/tex]) is [tex]\sqrt{(x_{2}-x_{1} ) ^{2}+(y_{2}-y_{1} ) ^{2} }[/tex]

Now,

Putting, [tex]x_{1} = 3, y_{1}=0, x_{2}=6, y_{2}=-13[/tex] we get,

JK = [tex]\sqrt{(6-3)^{2} +(-13-0)^{2} }[/tex]

= [tex]\sqrt{178}[/tex]  unit = 13.34 unit (approx)