Answer: The new volume of the tank is 4.67 L
Explanation:
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1,V_1\text{ and }T_1[/tex] are the initial pressure, volume and temperature of the gas
[tex]P_2,V_2\text{ and }T_2[/tex] are the final pressure, volume and temperature of the gas
We are given:
[tex]P_1=114kPa\\V_1=15L\\T_1=115^oC=[115+273]K=388K\\P_2=250kPa\\V_2=?\\T_2=-8^oC=[-8+273]K=265K[/tex]
Putting values in above equation, we get:
[tex]\frac{114kPa\times 15L}{388K}=\frac{250kPa\times V_2}{265K}\\\\V_2=\frac{114\times 15\times 265}{388\times 250}=4.67L[/tex]
Hence, the new volume of the tank is 4.67 L