A new gel is being developed to use inside padding and helmets to cushion the body from impacts. The gel is stored in a 4.24.2 cubic meters [m cubed ]m3 cylindrical tank with a diameter of 2 meters​ [m]. The tank is pressurized to 1.41.4 atmosphere​ [atm] of surface pressure to prevent evaporation. A total pressure probe located at the bottom of the tank reads 6565 feet of water​ [ft Upper H 2 Upper OH2O​]. What is specific gravity of the gel contained in the​ tank?

Respuesta :

Answer:

The specific gravity of the gel is 1470.68

Explanation:

Given:

Volume [tex]V = 4.24[/tex] [tex]m^{3}[/tex]

Diameter of tank [tex]d = 2[/tex] m

Pressure at surface [tex]P _{o} = 1.41[/tex] atm

Height [tex]h = 6565[/tex] ft [tex]= \frac{6565}{3.281} = 2001[/tex] m

Pressure at bottom is given by,

 [tex]P_{bottom} = \rho _{w} g h[/tex]

Where [tex]\rho _{w} = 1000 \frac{kg}{m^{3} }[/tex], [tex]g = 9.8\frac{m}{s^{2} }[/tex]

 [tex]P_{bottom} = 1000 \times 9.8 \times 2001[/tex]

 [tex]P_{bottom} = 19.6 \times 10^{6}[/tex] [tex]\frac{N}{m^{2} }[/tex]

Here volume is 4.24 [tex]m^{3}[/tex]

   [tex]\pi r^{2} h = 4.24[/tex]

 [tex]h = \frac{4.24}{3.14} = 1.35[/tex] m

From pascal equation,

[tex]P_{bottom} = P_{o} + \rho _{gel} g h[/tex]

Find density of gel from above equation,

[tex]19600000 = 142865.25 + \rho_{gel} \times 9.8 \times 1.35[/tex]

[tex]\rho_{gel} = 1470682.89[/tex] [tex]\frac{kg}{m^{3} }[/tex]

So specific gravity is given by,

   ζ = [tex]\frac{\rho _{gel} }{\rho_{w} }[/tex]

   ζ = [tex]\frac{1470682.89}{1000}[/tex]

   ζ = [tex]1470.68[/tex]

Therefore, the specific gravity of the gel is 1470.68