Respuesta :

Answer:

The answer is [tex]x=3[/tex] and  [tex]y=8.[/tex]

Step-by-step explanation:

Given:

3y+10x−54=0

5y−2x−34=0

Now, to solve the system of equations:

[tex]3y+10x-54=0\\\\3y+10x=54\ \ \ ......(1)[/tex]

[tex]5y-2x-34=0\\\\5y-2x=34\ \ \ \ ........(2)[/tex]

So, to multiply the equation (2) by 5 we get:

[tex]25y-10x=170\ \ \ ...(2)[/tex]

Now, to solve the equations by adding both the equations (1) and (2):

[tex]3y+10x+(25y-10x)=170+54\\\\3y+10x+25y-10x=224\\\\28y=224[/tex]

Then, dividing both sides by 28 we get:

[tex]y=8.[/tex]

Now, substituting the value of [tex]y[/tex] in equation (1):

[tex]3y+10x=54\\\\3(8)+10x=54\\\\3\times 8+10x=54\\\\24+10x=54[/tex]

Subtracting both sides by 24 we get:

[tex]10x=30[/tex]

Dividing both sides by 10 we get:

[tex]x=3.[/tex]

Therefore, the answer is [tex]x=3[/tex] and  [tex]y=8.[/tex]

Answer:

x= 0

y= -3

Step-by-step explanation:

i got it