Respuesta :

The diameter of a sphere is 20.32 m

Explanation:

Given:

Volume of the sphere, V = 4397m³

Diameter, D = ?

We know,

Volume of the sphere = [tex]\frac{4}{3} \pi r^3[/tex]

Where,

r = radius of the sphere

On substituting the value in the formula we get:

[tex]4397 = \frac{4}{3} \pi (r)^3\\\\r^3 = \frac{4397 X 3}{4\pi } \\\\r^3 = 1049.7 m^3\\\\r = 10.16m[/tex]

Diameter = 2 X radius

D = 2 X 10.16 m

D = 20.32 m

Therefore, the diameter of a sphere is 20.32 m

the diameter of a sphere is [tex]20.3m[/tex] .

Step-by-step explanation:

Here we have , a sphere with a volume of 4397 m^3 . We need to find the diameter of sphere . Let's find out:

We know that ,  Volume of sphere is given by formula as :

⇒ [tex]Volume =\frac{4}{3}\pi r^3[/tex]   .......(1)

According to question we have following parameters as :

[tex]Volume = 4397m^3\\Radius = \frac{Diameter}{2}[/tex]

Putting these values in we get:

⇒  [tex]Volume =\frac{4}{3}\pi r^3[/tex]

⇒  [tex]4397 =\frac{4}{3}\pi (\frac{D}{2}) ^3[/tex]

⇒  [tex]4397 =\frac{4}{3}\pi (\frac{D^3}{8})[/tex]

⇒  [tex]4397 =\pi (\frac{D^3}{6})[/tex]

⇒  [tex]D^3 =6 (\frac{4397}{\pi})[/tex]

⇒  [tex]D^3 =6 (\frac{4397}{3.14})[/tex]

⇒  [tex]D^3 =8402[/tex]

⇒  [tex]D =\sqrt[3]{ 8402}[/tex]

⇒  [tex]D =20.3m[/tex]

Therefore , the diameter of a sphere is [tex]20.3m[/tex] .