An ordinary egg can be approximated as a 5.5- cm diameter sphere whose properties are roughly k = 0.6 W/m·k and α = 0.14 × 10-6 m2 /s. The egg is initially at a uniform temperature of 4°C and is dropped into boiling water at 97°C.


Taking the convection heat transfer coefficient to be h = 1400 W/m2 ·K, determine how long it will take for center of the egg to reach 70°C.

Respuesta :

Answer:

The time required to reach the center temperature of egg at 70 °c  is     0.3 sec.

Explanation:

Given data

Diameter (d) = 5.5 cm = 0.055 m

K = 0.6 [tex]\frac{W}{mk}[/tex]

h= 1400 [tex]\frac{W}{m^{2} K }[/tex]

Initial temperature [tex]T_{i}[/tex] = 4 °c= 277 K

Ambient temperature [tex]T_{o}[/tex] = 97 °c= 370 K

Center temperature T = 70°C = 343 K

Thermal diffusivity  α =  [tex]0.14[/tex] × [tex]10^{-6} \frac{m^{2} }{s}[/tex]

We know that

[tex]\alpha = \frac{K}{\rho C}[/tex]

[tex]0.14[/tex] × [tex]10^{-6}[/tex] = [tex]\frac{0.6}{\rho C}[/tex]

[tex]\rho C =[/tex] 4.28 × [tex]10^{6} \frac{KJ}{m^{3} K }[/tex]

We know that from the lumped parameter  analysis

[tex]\frac{T - T_{o} }{T_{i} - T_{o} } = e (-\frac{ h A}{\rho V C} ) t[/tex]

Put all the values in above equation we get

[tex]\frac{343 - 370 }{277 - 370 } = e (-\frac{ (1400)(6)}{235400} ) t[/tex]

0.29 = 0.965 × t

t = 0.3 sec

Therefore the time required to reach the center temperature of egg at 70 °c is 0.3 sec.

This question involves the concepts of thermal diffusivity, lumped parameter analysis, and thermal conductivity.

It will take "0.26 s" for the center of the egg to reach 70°C.

We will use the formula for the lumped parameter analysis:

[tex]\frac{T-T_o}{T_i-T_o}=e^{\frac{-hA}{\rho VC}}t[/tex]

where,

T = ceneter temperature = 70° C + 273 = 343°C

T₀ = Ambient Temperature = 4°C + 273 = 277 K

T_i = Initial Temperature = 97°C + 273 = 370 K

h = heat transfer coefficient = 1400 W/m².K

A = Area of sphere = 4πr²

t = time interval = ?

V = volume of sphere = [tex]\frac{4}{3}\pi r^3[/tex]

K = thermal conductivity = 0.6 W/m.K

α = thermal diffusivity = 0.14 x 10⁻⁶ m²/s = [tex]\frac{K}{\rho C}=\frac{0.6\ W/m.K}{\rho C}[/tex]

[tex]\frac{1}{\rho C}=\frac{0.14\ x\ 10^{-6}\ m^2/s}{0.6\ W/m.K} = 0.23\ x\ 10^{-6}\ m^2.K/N[/tex]

Therefore,

[tex]\frac{343\ K-277\ K}{370\ K-277\ K}=e^{\frac{-(1400\ W/m^2.k)(4\pi r^2)(0.23\ x\ 10^{-6}\ m^2.K/N)}{(\frac{4}{3}\pi r^3)}}t\\\\0.7096=e^{-(0.000322)(\frac{3}{r})}t\\\\0.7096=e^{-(0.000322)(\frac{3}{0.0275})}t\\\\t=\frac{0.7096}{2.718}\\\\[/tex]

t = 0.26 s

Learn more about lumped parameter analysis here:

https://brainly.com/question/12977550?referrer=searchResults

Ver imagen hamzaahmeds