Respuesta :
Answer:
h = 74.7177 W/m^2 K
Explanation:
Given:-
- The diameter of the sphere, Ds = 20.0 mm
- The initial Temperature of sphere, Ti = 70°C
- The temperature of gas stream, Ts = 27°C
- The thermocouple reading after 97s, Tr = 50°C
Solution:-
- We will use Table A-1, to extract the following properties of copper at Ti = 70°C ( 343 K ):
Density ρ = 8933 kg/m^3
Specific Heat capacity cp = 389 J / kg.K
Thermal conductivity, k = 388 W/m.K
- The time-temperature history is given by the equations:
θ(t) / θi = exp ( - t / Rt*Ct )
Where,
Rt = 1 / h*As , Ct = ρ*V*cp , As = πDs^2 / 4 , θ = T - T∞
V = πDs^3 / 6.
- We will use the above relationships and given data to calculate:
θ(t) = T( at 97s) - T∞ = Tr - Ts
= 50 - 27 = 23°C
θi = Ti - T∞ = Ti - Ts
= 70 - 27 = 43°C
- Then we have:
θ(t) / θi = 23 / 43 = 0.53488372
θ(t) / θi = exp ( - t / τ )
0.53488372 = exp ( - t / τ )
Solve for τ:
τ = - 97 / Ln ( 0.53488372)
τ = 155.025 s
- Then solve for h:
τ = ρ*V*cp / h*As
h = ρ*V*cp / τ*As
h = ( 8933 )*(0.02/6)*(389) / ( 155.025)
h = 74.7177 W/m^2 K
- Verifying the use of spatial isothermal assumption:
Lc = Ds / 6 = 20 / 6 = 0.003333
Bi = h*Lc / k = (74.7177)*(0.00333) / 388 = 0.00064
Hence, Bi < 0.1 so, spatial isothermal assumption is valid.