Respuesta :

Answer:

The answer to your question is  Vc : Vs = [tex]\frac{3h}{4r}[/tex]    Ac : As =  [tex]\frac{1}{2} + \frac{h}{2r}[/tex]

Step-by-step explanation:

Process

1) Volume of a cylinder = Vc = πr²h

 Volume of a sphere = Vs = 4/3 πr³

  Vc : Vs = πr²h / 4/3πr³

              = 3/4 πr²h / πr³

              = 3h / 4r

              = [tex]\frac{3h}{4r}[/tex]

2)

Area of a cylinder = 2πr² + 2πrh

Area of a sphere = 4πr²

Ta cylinder : Ta sphere = (2πr² + 2πrh)/ 4πr²

                                      = 2πr²/4πr² + 2πrh/4πr²

                                      = 1/2 + h/2r

                                      = [tex]\frac{1}{2} + \frac{h}{2r}[/tex]