Respuesta :

Answer

Given,

Sirius A surface temperature,T = 9400 K

Sirius A luminosity,L = 26 L₀

L₀ is the luminosity of sun.

Radius of sun =  695700000 m

Temperature on sun surface = 5780 K

Luminous intensity is given by:-

[tex]L=4 \pi R^{2} \sigma T^{4}[/tex]

Now

[tex]\frac{L}{L_{0}}=\frac{4 \pi R^{2} \sigma T^{4}}{4 \pi R_{0}^{2} \sigma T_{0}^{4}}=26[/tex]

[tex]\Rightarrow \frac{R^{2} T^{4}}{R_{0}^{2} T_{0}^{4}}=26[/tex]

[tex]\Rightarrow R^{2}=26 \times \frac{R^{2} T_{0}^{4}}{T^{4}}=26 \times \frac{695700000^{2} \times 5780^{4}}{9400^{4}}[/tex]

[tex]R=1341246640\ m=1.34 \times 10^{9}[/tex]

The radius of Sirius will be "1.34 × 10⁹".

Luminous intensity

According to the question,

Temperature of surface, T = 9400 K

Sun's radius, R = 695700000 m

Sun's surface temperature = 5780 K

Luminosity of Sirius A, L = 26 L₀

Here, L₀ = Sun's luminosity

We know the formula,

Luminous intensity,

L = 4πR²σT⁴

then,

→ [tex]\frac{L}{L_0} = \frac{4 \pi R^2 \sigma T^4}{4 \pi R_0^2 \sigma T_0^4}[/tex] = 26

or,

[tex]\frac{R^2T^4}{R_0^2 T_0^4}[/tex] = 26  

hence,

The radius will be:

→ R² = 26 × [tex]\frac{R^2 T_0^4}{T^4}[/tex]

By substituting the values, we get

       = 26 × [tex]\frac{(695700000)^2 (5780)^4}{(9400)^4}[/tex]

       = 1341246640 m

       = 1.34 × 10⁹

Thus the above answer i correct.

Find out more information about Luminous intensity here:

https://brainly.com/question/11719996