Respuesta :

Answer:

[tex]x=3[/tex] & [tex]y=5[/tex]

Using the method of finding solution of linear equation in two variables and concept of exponent we found the solution.

Step-by-step explanation:

from the Question,

Given:-            

                           [tex]b^{x}b^{y}= b^{8}[/tex]                                      

                          [tex]b^{4x}b^{-2y} = b^{2}[/tex]                                

Using law of exponents we get,

             [tex]x^{m} x^{n} = x^{m+n}[/tex]      &        [tex]x^{m} = x^{n}[/tex]  ⇒     [tex]m = n[/tex]

Now, from the data given in the question,

     ⇒                   [tex]b^{(x+y)} = b^{8}[/tex]

     ⇒                 [tex](x+y) = 8[/tex]                            ..............(i)

     ⇒                  [tex]b^{4x-2y} = b^{2}[/tex]

     ⇒                 [tex]4x-2y = 2[/tex]                           ..............(ii)

Solving equation (i) & (ii) we get,

                           [tex]4\times(x+y) = 4\times8[/tex]  

                              [tex](4x+4y) = 32[/tex]                  ...............(iii)

Subtracting equation (ii) from (iii) we get,

                               [tex]y=5[/tex]

Putting the value of in equation (i)

                               [tex]x=3.[/tex]

Using the method of finding solution of linear equation in two variables and concept of exponent we found the solution.

The values of x and y from the given expressions are; x = 3 and y = 5

We are given;

b^(x) × b^(y) = b^(8) - - - (eq 1)

b^(4x) × b^(-2y) = b^(2) - - - (eq 2)

  • Now according to laws of exponents, we know that;

If a² × a³ = a^(y)

Then it means that;

2 + 3 = y

  • Thus, from eq 1, we have;

x + y = 8 - - - (eq 3)

  • From eq 2, we have;

4x - 2y = 2 - - - (eq 4)

From eq 3; x = 8 - y

Thus;

4(8 - y) - 2y = 2

32 - 4y - 2y = 2

30 = 6y

y = 30/6

y = 5

Thus;

x = 8 - 5

x = 3

Read more about simultaneous equations at;https://brainly.com/question/16863577