In an ionic solution, a current consists of Ca2+Ca2+ ions (of charge +2e+2e) and Cl−Cl− ions (of charge −e−e) traveling in opposite directions. Part A If 5.02×1018 Cl−Cl− ions go from A to B every 0.620 minmin , while 3.25×1018 Ca2+Ca2+ ions move from B to A, what is the current (in mAmA) through this solution? Part B In which direction (from A to B or from B to A) is the current in part A going?

Respuesta :

Answer:

A

The current through the solution is   [tex]I =35.61mA[/tex]

B

The current is moving from B to A

Explanation:

From the question we are told that

      The number of  [tex]Cl^{-}[/tex] that move from A to B is [tex]N_{cl} = 5.02 *10^{18} ions[/tex]

      The time taken to move from A to B   [tex]t_{cl} = 0.620[/tex]

                                                                          [tex]=37.2 s[/tex]

Since the value of 1 charge is  [tex]q =1.602 *10^{-19} C[/tex]

The quantity of charge Q that flow from A to B is mathematically given as

                         [tex]Q_{cl} = 5.02 *10^{18} * 1.602*10^{-19}[/tex]

                                [tex]=0.804C[/tex]

   The number of  [tex]Ca^{+}[/tex] that move from A to B is [tex]N_{ca} = 3.25*10^{18} ions[/tex]

      Since time taken to move from A to B is equal to time taken to move from B to A   [tex]t =t_{cl} =t_{ca}= 0.620=37.2s[/tex]

 

The quantity of charge Q that flow from B to A is mathematically given as

                         [tex]Q_{ca} = 3.25 *10^{18} * 1.602*10^{-19}[/tex]

                                [tex]=0.5207C[/tex]

The total quantity of charge is

                                [tex]Q_{tot}=Q_{cl} + Q_{ca}[/tex]

                                [tex]Q_{tot}= 0.804 + 0.5207[/tex]

                                       [tex]= 1.325C[/tex]

The current flowing through the solution is

                         [tex]I =\frac{Q_{tot}}{t}[/tex]

                            [tex]I = \frac{1.325}{37.2}[/tex]

                                [tex]= 0.03561A[/tex]

                            [tex]I =35.61mA[/tex]

The flow is from B to A cause current  flow from the positive terminal to negative terminal