ZILLDIFFEQMODAP11 3.1.021. My Notes Ask Your Teacher A tank contains 150 liters of fluid in which 10 grams of salt is dissolved. Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of 5 L/min; the well-mixed solution is pumped out at the same rate. Find the number A(t) of grams of salt in the tank at time t.

Respuesta :

Answer:

Therefore, the number of grams of salt in the tank at time t is [tex]A(t) = 150-140 e^{-\frac{t}{30} }[/tex]

Explanation:

Given:

Tank A contain [tex]V_{1} = 150[/tex] lit

Rate [tex]\alpha = 5 \frac{L}{min}[/tex]

Dissolved salt [tex]A = 10[/tex] gm

Salt pumped in one minute is [tex]4 \frac{L}{min}[/tex]

Salt pumped out is [tex]\frac{5L}{150L} = \frac{1}{30}[/tex] of initial amount added salt.

To find [tex]A(t)[/tex]

  [tex]\frac{dA}{dt} = Rate _{in} - Rate _{out}[/tex]

  [tex]A' = 5 - \frac{A}{30}[/tex]

  [tex]A' + \frac{A}{30} = 5[/tex]

Solving above equation,

  [tex]I .F = e^{\int\limits {p} \, dt }[/tex]

   [tex]y = e^{\int\limits {\frac{1}{30} } \, dt }[/tex]

   [tex]y = e^{\frac{t}{30} }[/tex]

[tex](Ae^{\frac{t}{30} } )' = 5 e^{\frac{t}{30} } + c[/tex]

Integrating on both side,

[tex]Ae^{\frac{t}{30} } = 5 \times 30 e^{\frac{t}{30} } +c[/tex]

Add [tex]e^{-\frac{t}{30} }[/tex] on above equation,

 [tex]A = 150 + ce^{-\frac{t}{30} }[/tex]

Here given in question,[tex]A(t=0) = 10[/tex]

 [tex]10 =150 +c[/tex]

   [tex]c = -140[/tex]

Put value of constant in above equation, and find the number of grams of salt in the tank at time t.

 [tex]A(t) = 150-140 e^{-\frac{t}{30} }[/tex]

Therefore, the number of grams of salt in the tank at time t is [tex]A(t) = 150-140 e^{-\frac{t}{30} }[/tex]