Respuesta :
Answer:
11.11% probability that Carlo drew a 6
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Possible results:
(Carlo, Eric)
(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (7,1), (8,1), (9,1),(10,1)
(1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (7,2), (8,2), (9,2),(10,2)
(1,3), (2,3), (3,3), (4,3), (5,3), (6,3), (7,3), (8,3), (9,3),(10,3)
(1,4), (2,4), (3,4), (4,4), (5,4), (6,4), (7,4), (8,4), (9,4),(10,4)
(1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (7,5), (8,5), (9,5),(10,5)
(1,6), (2,6), (3,6), (4,6), (5,6), (6,6), (7,6), (8,6), (9,6),(10,6)
(1,7), (2,7), (3,7), (4,7), (5,7), (6,7), (7,7), (8,7), (9,7),(10,7)
(1,8), (2,8), (3,8), (4,8), (5,8), (6,8), (7,8), (8,8), (9,8),(10,8)
(1,9), (2,9), (3,9), (4,9, (5,9), (6,9), (7,9), (8,9), (9,9),(10,9)
(1,10), (2,10), (3,10), (4,10), (5,10), (6,10), (7,10), (8,10), (9,10),(10,10)
Desired outcomes:
Carlo drawing a six, higer than Eric
(6,1),(6,2),(6,3),(6,4),(6,5)
5 possible outcomes
So D = 5.
Total outcomes:
Given that Carlo's number was higher than Eric's, so only pairs in which Carlo is higher than Eric
(2,1), (3,1), (4,1), (5,1), (6,1), (7,1), (8,1), (9,1),(10,1)
(3,2), (4,2), (5,2), (6,2), (7,2), (8,2), (9,2),(10,2)
(4,3), (5,3), (6,3), (7,3), (8,3), (9,3),(10,3)
(5,4), (6,4), (7,4), (8,4), (9,4),(10,4)
(6,5), (7,5), (8,5), (9,5),(10,5)
(7,6), (8,6), (9,6),(10,6)
(8,7), (9,7),(10,7)
(9,8), (10,8)
(10,9)
45 total outcomes
So T = 45
Probability
[tex]p = \frac{D}{T} = \frac{5}{45} = 0.1111[/tex]
11.11% probability that Carlo drew a 6