contestada

For the equilibrium

2IBr(g) ⇌ I₂(g) + Br₂(g) Kc = 8.50 × 10⁻³ at 150°C.

If 0.0600 mol of IBr is placed in a 1.0-L container, what is the partial pressure of I₂(g) in atm after equilibrium is reached?

Respuesta :

If 0.0600 mol of IBr is placed in a 1.0-L container, the partial pressure of I₂(g) after equilibrium is reached is 0.176 atm.

0.0600 mol of IBr is placed in a 1.0-L container. The initial molar concentration is:

[tex][IBr]i = \frac{0.0600mol}{1.0L} = 0.060M[/tex]

We will make an ICE chart for the following reaction.

        2 IBr(g)  ⇌  I₂(g)  +  Br₂(g)

I         0.060         0          0

C         -2x           +x         +x

E      0.060-2x      x           x

The concentration equilibrium constant (Kc) is:

[tex]Kc = 8.50 \times 10^{-3} = \frac{[I_2][Br_2]}{[IBr]^{2} } = \frac{x^{2} }{(0.060-x)^{2} } \\\\x = 0.00507[/tex]

The concentration (C) of I₂ at equilibrium is x = 0.00507 M. We can calculate its partial pressure (P) using the following expression.

[tex]P = C \times R \times T = 0.00507mol/L \times \frac{0.08206atm.L}{mol.K} \times 423 K = 0.176 atm[/tex]

where,

  • R is the ideal gas constant
  • T is the absolute temperature

If 0.0600 mol of IBr is placed in a 1.0-L container, the partial pressure of I₂(g) after equilibrium is reached is 0.176 atm.

Learn more: https://brainly.com/question/23947940