Respuesta :
Answer:
The lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.
Explanation:
The Upper Surface Cp is given as
[tex]Cp_u=-0.8 *0.6 +0.1 \int\limits^1_{0.6} \, dx =-0.8*0.6+0.4*0.1[/tex]
The Lower Surface Cp is given as
[tex]Cp_l=-0.4 *0.6 +0.1 \int\limits^1_{0.6} \, dx =-0.4*0.6+0.4*0.1[/tex]
The difference of the Cp over the airfoil is given as
[tex]\Delta Cp=Cp_l-Cp_u\\\Delta Cp=-0.4*0.6+0.4*0.1-(-0.8*0.6-0.4*0.1)\\\Delta Cp=-0.4*0.6+0.4*0.1+0.8*0.6+0.4*0.1\\\Delta Cp=0.4*0.6+0.4*0.2\\\Delta Cp=0.32[/tex]
Now the Lift Coefficient is given as
[tex]C_L=\Delta C_p cos(\alpha_i)\\C_L=0.32\times cos(4*\frac{\pi}{180})\\C_L=0.3192[/tex]
Now the coefficient of moment about the leading edge is given as
[tex]C_M=-0.3*0.4*0.6-(0.6+\dfrac{0.4}{3})*0.2*0.4\\C_M=-0.1306[/tex]
So the lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.
The lift coefficient and the pitching moment coefficient about the leading edge due to lift are respectively; 0.3192 and -0.13
Aerodynamics engineering
We are given;
Distance of upper surface from leading edge to percentage of chord = -0.8
Percentage of chord for both surfaces = 60% = 0.6
Rate of increase at trailing edge for both surfaces = +0.1
Distance of lower surface from leading edge to percentage of chord = -0.6
angle of incidence; α_i = 4° = 4π/180 rad
Let us first calculate the Cp constant for both the upper and lower surface.
Cp for upper surface is;
Cp_u = (-0.8 × 0.6) - 0.1∫¹₀.₆ dx
Solving this integral gives;
Cp_u = (-0.8 × 0.6) - (0.1 × 0.4)
Cp_u = -0.52
Cp for lower surface is;
Cp_l = (-0.4 × 0.6) + 0.1∫¹₀.₆ dx
Solving this integral gives;
Cp_l = (-0.4 × 0.6) + (0.1 × 0.4)
Cp_l = -0.2
Change in Cp across the foil is;
ΔCp = Cp_l - Cp_u
ΔCp = -0.2 - (-0.52)
ΔCp = 0.32
Formula for the lift coefficient is;
C_L = ΔCp * cosα_i
C_L = 0.32 * cos (4π/180)
C_L = 0.3192
Formula for the pitching moment coefficient is;
(-0.3 * 0.4 * 0.6) - ((0.6 + (0.4/3)) * 0.2 * 0.4)
C_m,p = -0.072 - 0.059
C_mp ≈ -0.13
Read more about aerodynamics at; https://brainly.com/question/6672263