Select the TRUE statements.

For the function 48(1.25)x, the parameter for the growth factor is 1.25.

For the function f(x) = 75x + 250, the parameter for the beginning value is 75.

For the function 28(0.5)x, the parameter for the decay factor is 50%.

For the function y = 18x + 72, the parameter for the average rate of change is 18.

Respuesta :

Answer:

a) For the function [tex]48(1.25)^x[/tex], the parameter for the growth factor is 1.25

c) For the function [tex]28(0.5)^x[/tex], the parameter for the decay factor is 50%.

d) For the function y = 18x + 72, the parameter for the average rate of change is 18.

Step-by-step explanation:

We are given the following in the question:

a) the parameter for the growth factor is 1.25.

[tex]f(x) = 48(1.25)^x[/tex]

Comparing it to

[tex]y(x) = a(1+r)^x[/tex]

The growth factor is

[tex]1+r = 1.25[/tex]

Thus, the given statement is true

b) the parameter for the beginning value is 75.

We are given the equation

[tex]f(x) = 75x + 250[/tex]

The beginning value is given when x = 0. Putting value, we get

[tex]f(0) = 75(0) + 250 = 250[/tex]

Thus, the beginning value is 250.

Hence, the given statement is false.

c) the parameter for the decay factor is 50%.

[tex]f(x) = 28(0.5)^x[/tex]

Comparing it to

[tex]y(x) = a(1-r)^x[/tex]

The growth factor is

[tex]1-r = 0.5 = 50\%[/tex]

Thus, the given statement is true

d) the parameter for the average rate of change is 18.

[tex]y = 18x + 72[/tex]

Comparing to general form of equation:

[tex]y = mx + c[/tex]

where m is the slope and gives the average rate of change.

Thus, the average rate of change is 18.

Hence, the given statement is true.