Answer:
(a) 0.5000
(b) 0.0833
(c) 0.2500
((d) 0.9500
Step-by-step explanation:
Given that the following probabilities;
P(A1) = 0.12; P(A2) = 0.08,
P(A3) = 0.05; P(A1 ∪ A2) = 0.14, P(A1 ∪ A3) = 0.14,
P(A2 ∪ A3) = 0.11,
P(A1 ∩ A2 ∩ A3) = 0.01
(a) we want to find P(A2/A1).
P(A2/A1) = P(A1nA2)/P(A1)..........a
So we need to find P(A1nA2)
P(A1 ∪ A2)= P(A1) + P(A2) - P(A1nA2)
P(A1nA2) =P(A1) + P(A2) - P(A1 ∪ A2)
P(A1nA2) = 0.12 + 0.08 - 0.14
P(A1nA2) = 0.20- 0.14
P(A1nA2 )= 0.060
P(A2/A1) = 0.06/0.12
= 0.5000. (Ans)
(b) The required probability is: P(A2∩A3/A1) =[P(A2∩A3)∩P(A1)] /P(A1).........b
But [P(A2nA3)nP(A1)] = P(A1∩A2∩ A3)
P(A2∩A3/A1) = 0.01/0.12
P(A2∩A3/A1) = 0.0833 (Ans)
(c) the required probability is given by Pr =
(Pr. of A1 defect) + (Pr. of A2 defect) + (Pr. of A3 defect)........c
Pr = 0.12 + 0.08 + 0.05
Pr = 0.2500 (And)
(d) The required probability is given by:
Pr[(A3)' /(A1∩A2)] = Pr[(A3)'nPr(A1∩A2)] /Pr(A1∩A2)]
Pr(A3)’ = 1 - Pr(A3) = 1 -0.05
Pr(A3)'/(A1∩A2)= (0.95×0.06)/(0.06)
Pr(A3)'/(A1∩A2 )= 0.95(Ans)......d