A circular coil with 169 turns has a radius of 2.6 cm. (a) What current through the coil results in a magnetic dipole moment of 3.4 A·m2? I= A (b) What is the maximum torque that the coil will experience in a uniform field of strength 0.03 T? τmax= Nm (c) If the angle between μ and B is 44.9∘, what is the magnitude of the torque on the coil? τ= Nm (d) What is the magnetic potential energy of coil for this orientation?

Respuesta :

Answer with Explanation:

We are given that

Number of turns=n=169

Radius of coil=r=2.6 cm=[tex]2.6\times 10^{-2} m[/tex]

[tex]1 cm=10^{-2}m[/tex]

Area of circular coil=[tex]\pi r^2[/tex]

Where [tex]\pi=3.14[/tex]

Using the formula

Area of circular coil=[tex]3.14\times (2.6\times 10^{-2})^2=21.2\times 10^{-4}m^2[/tex]

a.Magnetic dipole  moment=[tex]\mu=3.4 Am^2[/tex]

[tex]I=\frac{\mu}{nA}[/tex]

Using the formula

[tex]I=\frac{3.4}{169\times 21.2\times 10^{-4}}[/tex]

[tex]I=9.5 A[/tex]

b.Magnetic field,  B=0.03 T

[tex]\tau_{max}=\mu B[/tex]

Substitute the value

[tex]\tau_{max}=3.4\times \times 0.03=0.102 Nm[/tex]

c.[tex]\theta=44.9^{\circ}[/tex]

[tex]\tau=\tau_{max}sin\theta[/tex]

Substitute the values

[tex]\tau=0.102sin44.9=0.07 Nm[/tex]