Work done = -19.7 KJ
Heat transferred = 17.4 KJ
Explanation:
Given-
Temperature, T = 27°C
Volume, V = 0.2 m³
Pressure, [tex]P_{1}[/tex]= 1 bar
[tex]v_{2}[/tex] = 4 bar
pV¹°¹ = constant
From superheated propane table, at [tex]P_{1}[/tex]= 1 bar and[tex]T_{1}[/tex] = 27⁰C
[tex]v_{1}[/tex] = 0.557 m³/kg
[tex]v_{2}[/tex] = 473.73 KJ/kg
(a) Work = ?
We know,
V1¹°¹ = p2V2¹°¹
[tex]V2 = (\frac{P1}{P2})^\frac{1}{1.1} * V1 \\\\V2 = \frac{1}{4}^\frac{1}{1.1} * 0.557 \\\\V2 = 0.158 m^3/kg[/tex]
At = 4 bar and v = 0.158 m³/kg
u2 = 548.45K J/kg
To find work done in the process:
[tex]W = \frac{P2V2 - P1V1}{1-n} \\\\W = \frac{m(P2V2 - P1V1)}{1-n} \\\\W = \frac{v}{u} * \frac{P2V2 - P1V1}{1-n}\\ \\W = \frac{0.2}{0.5571} * \frac{4 X 0.158 - 1 X 0.577}{1-1.1} X 10^5 \frac{Pa}{Bar} \frac{1KJ}{10^3Nm} \\ \\W = -19.75KJ[/tex]
(b) Heat transfer = ?
[tex]Q = m(u2 - u1) + W\\\\Q = \frac{0.2}{0.5571} * (548.45 - 473.73) + (-19.7)\\\\Q = 17.4KJ[/tex]