Cyclohexane has a freezing point of 6.50 ∘C and a Kf of 20.0 ∘C/m. What is the freezing point of a solution made by dissolving 0.771 g of biphenyl (C12H10) in 25.0 g of cyclohexane?

Respuesta :

Answer: [tex]2.49^0C[/tex]

Explanation:

Depression in freezing point is:

[tex]T_f^0-T_f=i\times k_f\times \frac{w_2\times 1000}{M_2\times w_1}[/tex]

where,

[tex]T_f[/tex] = freezing point of solution = ?

[tex]T^o_f[/tex] =  freezing point of solvent (cyclohexane) = [tex]6.50^oC[/tex]

[tex]k_f[/tex] =  freezing point constant  of  solvent (cyclohexane)  = [tex]20.0^oC/m[/tex]

m = molality

i = Van't Hoff factor = 1 (for non-electrolyte)

[tex]w_2[/tex] = mass of solute (biphenyl) = 0.771 g

[tex]w_1[/tex] = mass of solvent (cyclohexane) = 25.0 g

[tex]M_2[/tex] = molar mass of solute (biphenyl) =

Now put all the given values in the above formula, we get:

[tex](6.50-T_f)^oC=1\times (20.0^oC/m)\times \frac{(0.771g)\times 1000}{154\times (25.0g)}[/tex]

[tex](6.50-T_f)^oC=4.01[/tex]

[tex]T_f=2.49^0C[/tex]

Therefore, the freezing point of a solution made by dissolving 0.771 g of biphenyl in 25.0 g of cyclohexane is [tex]2.49^0C[/tex]