What is the range of y = –5sin(x)? all real numbers Negative 5 less-than-or-equal-to y less-than-or-equal-to 5 all real numbers Negative five-halves less-than-or-equal-to y less-than-or-equal-to five-halves all real numbers Negative 1 less-than-or-equal-to y less-than-or-equal-to 1 all real numbers Negative one-fifth less-than-or-equal-to y less-than-or-equal-to one-fifth

Respuesta :

Answer:

The range of given function is

[tex][-5,5][/tex]    

Step-by-step explanation:

We are given the function:

[tex]y = -5\sin(x)[/tex]

We have to find the range of the given function.

Range of function

  • Range is the collection of all possible values of y for the domain of function.

Range of basic sine function is

[tex]-1\leq \sin(x) \leq 1[/tex]

Multiplying the range by -5

[tex]5\geq -5\sin(x) \geq -5[/tex]

Thus, the range of given function is

[tex]-5\leq -5\sin(x) \leq 5[/tex]

[tex]-5\leq y\leq 5[/tex]

Thus, the range of given function is

[tex][-5,5][/tex]

The attached image shows the graph for the given function.

Ver imagen ChiKesselman

All real numbers {y | − 5 ≤ y ≤ 5 }

Step-by-step explanation: