Respuesta :

(2x+5y)(2x-5y)
=[tex] 4x^{2} -10xy+10xy-25[/tex][tex] y^{2} [/tex]
=[tex] 4x^{2}- 25y^{2} [/tex]

Answer:

The product of  [tex]\left(2x+\:5y\right)\left(2x\:−\:5y\right)[/tex] is

[tex]4x^2-25y^2[/tex]

Step-by-step explanation:

Given : (2x+ 5y) and (2x−5y).

We have to find the product of [tex]\left(2x+\:5y\right)\left(2x\:−\:5y\right)[/tex]

Consider , the given expression  [tex]\left(2x+\:5y\right)\left(2x\:−\:5y\right)[/tex]

Applying the difference of two square formula,

[tex]\left(a+b\right)\left(a-b\right)=a^2-b^2[/tex]

We have,

[tex]=\left(2x\right)^2-\left(5y\right)^2[/tex]

Apply exponent rule, [tex]\left(a\cdot \:b\right)^n=a^nb^n[/tex]

[tex]=2^2x^2-5^2y^2[/tex]

Simplify, we have,

[tex]=4x^2-25y^2[/tex]

Thus, the product of  [tex]\left(2x+\:5y\right)\left(2x\:−\:5y\right)[/tex] is

[tex]4x^2-25y^2[/tex]