HELP!! I NEED THIS QUICKLY

Jakita examines the ordered pairs ( 3/4, 2/3), (1/4, 2), (1, 1/2) and (1/2, 1), and determines the points form a direct variation with a k value of 1/2.

Which statements about Jakita's conclusion are true? Select two options.
A.) The points actually represent an inverse variation.
B.) The k value of the direct variation is actually 2.
C.) The ordered pairs can be represented by the function y = x/2
D.) The ordered pairs can be represented by the function y = 1/2x
E.) As one quantity increases, the other also increases.​

Respuesta :

Answer:

A and D

Step-by-step explanation:

We are given that

(3/4,2/3),(1/4,1),(1,1/2) and (1/2,1)

[tex]x_1=\frac{3}{4}[/tex]

[tex]y_1=\frac{2}{3}[/tex]

[tex]x_2=\frac{1}{4},y_2=1[/tex]

[tex]x_3=1,y_3=\frac{1}{2}[/tex]

[tex]x_4=\frac{1}{2},y_4=1[/tex]

k=[tex]\frac{1}{2}[/tex]

Direct proportion:

[tex]\frac{x}{y}=k[/tex]

Inverse proportion:[tex]xy=k[/tex]

[tex]\frac{x_1}{y_1}=\frac{3}{4}\times \frac{3}{2}=\frac{9}{8}\neq \frac{1}{2}[/tex]

Therefore, it is not in direct proportion.

[tex]\frac{1}{4\times 2}=\frac{1}{8}\neq\frac{1}{2}[/tex]

[tex]\frac{1}{\frac{1}{2}}=2\neq \frac{1}{2}[/tex]

[tex]x_1y_1=\frac{3}{4}\times \frac{2}{3}=\frac{1}{2}[/tex]

[tex]x_2y_2=\frac{1}{4}\times 2=\frac{1}{2}[/tex]

[tex]x_3y_3=1\times \frac{1}{2}=\frac{1}{2}[/tex]

[tex]x_4y_4=\frac{1}{2}\times 1=\frac{1}{2}[/tex]

Therefore, [tex]xy=k=\frac{1}{2}[/tex]

Hence, the given points form an inverse variation .

[tex]xy=\frac{1}{2}[/tex]

[tex]y=\frac{1}{2x}[/tex]

Option A and D is true.

Answer: A and D

Step-by-step explanation:

Cause edg2020