Answer: The corresponding value of [tex]K_p[/tex] for this reaction at 84.5°C is 0.00232
Explanation:
[tex]2SO_2(g)+O_2(g)\rightarrow 2SO_3(g)[/tex]
Relation of with is given by the formula:
[tex]K_p=K_c(RT)^{\Delta ng}[/tex]
where,
= equilibrium constant in terms of partial pressure = ?
[tex]K_c[/tex] = equilibrium constant in terms of concentration = 0.0680
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature =[tex]84.5^0C=(273+84.5)K=357.5K[/tex]
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}=2-3=-1[/tex]
Putting values in above equation, we get:
[tex]K_p=0.0680\times (0.0821\times 357.5)^{-1}\\\\K_p=0.00232[/tex]
Thus the corresponding value of [tex]K_p[/tex] for this reaction at 84.5°C is 0.00232