Respuesta :

Length = 12 m and width = [tex]\frac{7}{2}[/tex] m.

Solution:

Let the width of the rectangle be w.

Length of the rectangle = 2w + 5

Area of the rectangle given = 42 m²

Area of the rectangle = length × width

length × width = 42

(2w + 5) × w = 42

[tex]2w^2+5w=42[/tex]

Subtract 42 from both sides, we get

[tex]2w^2+5w-42=0[/tex]

Using quadratic formula,

[tex]$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]

Here, [tex]a=2, b=5, c=-42[/tex]

[tex]$w=\frac{-5 \pm \sqrt{5^{2}-4 \cdot 2(-42)}}{2 \cdot 2}[/tex]

[tex]$w=\frac{-5 \pm \sqrt{25+336}}{4}[/tex]

[tex]$w=\frac{-5 \pm \sqrt{361}}{4}[/tex]

[tex]$w=\frac{-5 \pm19}{4}[/tex]

[tex]$w=\frac{-5+19}{4}, w=\frac{-5-19}{4}[/tex]

[tex]$w=\frac{14}{4}, w=\frac{-24}{4}[/tex]

[tex]$w=\frac{7}{2}, w=-6[/tex]

Dimension cannot be in negative, so neglect w = –6.

Width of the rectangle = [tex]\frac{7}{2}[/tex] m

[tex]$L=2(\frac{7}{2} )+5=12 \ m[/tex]

Hence length = 12 m and width = [tex]\frac{7}{2}[/tex] m.