Somebody pls help!!! WILL GIVE BRAINLIEST IF CORRECT!!!!
MAKE IT SIMPLE
A cylinder and a cone have the same diameter: 8 inches. The height of the cylinder is 9 inches. The height of the cone is 18 inches.

Use π = 3.14.

What is the relationship between the volume of this cylinder and this cone? Explain your answer by determining the volume of each and comparing them. Show all your work.

Respuesta :

The relationship between the volume of the cylinder and cone is the volume of the cone is 1.5 times bigger than the volume of the cylinder.

Explanation:

The radius is given by [tex]r=\frac{d}{2} =\frac{8}{2} =4[/tex]

The volume of the cone can be determined using the formula,

[tex]V=\pi r^{2} \frac{h}{3}[/tex]

where [tex]\pi=3.14, r=4, h=18[/tex]

Volume of the cone  [tex]=\pi r^{2} \frac{h}{3}[/tex]

                                  [tex]=3.14(4)^2\frac{(18)}{3}[/tex]

                                  [tex]=301.44 \ cm^3[/tex]

The volume of the cone is [tex]301.44 \ {cm}^{3}[/tex]

The volume of the cylinder can be determined using the formula,

[tex]V=\pi r^{2} h[/tex]

where [tex]\pi=3.14, r=4, h=9[/tex]

Volume of the cylinder [tex]=\pi r^{2} h[/tex]

                                      [tex]=3.14(16)(9)[/tex]

                                      [tex]=452.16 \ cm^3[/tex]

Thus, the volume of the cylinder is [tex]452.16 \ {cm}^{3}[/tex]

Hence, the relationship between the volume of the cylinder and cone is the volume of the cone is 1.5 times bigger than the volume of the cylinder.