Answer:
a) p = 0.6346
b) 95% confidence interval
Lower limit: 0.5951
Upper limit: 0.6741
Step-by-step explanation:
We are given the following in the question:
Sample size, n = 572
Number of Santa Fe black-on-whitepots , x = 363
a) proportion of Santa Fe black-on-white potsherds
[tex]\hat{p} = \dfrac{x}{n} = \dfrac{363}{572} = 0.6346[/tex]
b) 95% confidence interval
[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]
Putting the values, we get:
[tex]0.6346\pm 1.96(\sqrt{\frac{0.6346(1-0.6346)}{572}}) = 0.6346\pm 0.0395\\\\=(0.5951,0.6741)[/tex]
Lower limit: 0.5951
Upper limit: 0.6741