Respuesta :
Answer:
a) A = 1667 and B = 2353
b) Oven A
c) Oven A
d) Below 13,333 pizza: Oven A
Above 13,334 pizza: Oven B
Explanation:
We have the following data:
Oven A: Oven B:
Capacity 20 p/hr 40p/hr
Fixed Cost $20,000 $30,000
Variable Cost $2.00/p $1.25/p
Selling Price: $14
a) Break-even point → Cost = Revenue
([tex]x[/tex] refers to the number of pizza sold)
Oven A:
20000 + 2[tex]x[/tex] = 14[tex]x[/tex]
20000 = 14[tex]x[/tex] - 2[tex]x[/tex]
[tex]x[/tex] = 20000/ 12
[tex]x[/tex] = 1666.67 ≈ 1667 pizza
Oven B:
30000 + 1.25[tex]x[/tex] = 14[tex]x[/tex]
30000 = 14[tex]x[/tex] - 1.25[tex]x[/tex]
[tex]x[/tex] = 30000/ 12.75
[tex]x[/tex] = 2352.9 ≈ 2353 pizza
b) Comparing both oven for 9,000 pizza
Profit = Selling Price - Cost Price
Oven A:
Profit = (9000 x 14) - (20,000 + 2 x 9000)
Profit = 126000 - 38000
Profit = 88000
Oven B:
Profit = (9000 x 14) - (30,000 + 1.25 x 9000)
Profit = 126000 - 41250
Profit = 84750
Oven A is more profitable.
c)
Oven A:
Profit = (12000 x 14) - (20,000 + 2 x 12000)
Profit = 168000 - 44000
Profit = 124000
Oven B:
Profit = (12000 x 14) - (30,000 + 1.25 x 12000)
Profit = 168000 - 45000
Profit = 123000
Oven A is more profitable.
d) Using the equation formed in a):
20,000 - 12[tex]x[/tex] < 30,000 - 12.75[tex]x[/tex]
12.75[tex]x[/tex] - 12[tex]x[/tex] < 30000 - 20000
0.75[tex]x[/tex] < 10000
[tex]x[/tex] < 10000/0.75
[tex]x[/tex] < 13333.3
Hence, if the production is below 13,333 Oven A is beneficial.
For production of 13,334 and above, Oven B is beneficial.
Answer:
a. Find the break even points in units for each oven.
Breakeven for type A pizza x = = 1,666.6 units of pizza need to be sold in order to obtain breakeven for Type A
Breakeven for type B pizza x = = 2,352.9 units of pizza need to be sold in order to obtain breakeven for Type B
b. If the owner expects to sell 9000 pizzas, which oven should she purchase?
Type B: because the profit will be twice what will be obtainable from type A considering the fact that it produces pizza at the ration of TypeB:TypeA, 40:20 or 2:1
Profit for type a = 9000/20 x 14 = 6,300 – 1,666,6units ($23, 3332) = 4366.4 units
Profit for type B = 10,247.1 units of pizza - which makes it justifiable
Explanation: