Answer:
(a). The ball's centripetal acceleration is [tex]16.17\times10^{2}\ m/s^2[/tex]
(b). The magnitude of the net force is 232.9 N.
Explanation:
Given that,
Mass of baseball = 144 g
Speed = 81 mph = 36.2 m/s
Distance = 81 cm
(a). We need top calculate the ball's centripetal acceleration just before it is released
Using formula of centripetal acceleration
[tex]a=\dfrac{v^2}{r}[/tex]
Where, v = speed
r = radius
Put the value into the formula
[tex]a=\dfrac{(36.2)^2}{81\times10^{-2}}[/tex]
[tex]a=1617.82\ m/s^2[/tex]
[tex]a=16.17\times10^{2}\ m/s^2[/tex]
(b). We need to calculate the magnitude of the net force that is acting on the ball just before it is released
Using formula of force
[tex]F=\dfrac{mv^2}{r}[/tex]
Put the value into the formula
[tex]F=\dfrac{144\times10^{-3}\times(36.2)^2}{81\times10^{-2}}[/tex]
[tex]F=232.9\ N[/tex]
Hence, (a). The ball's centripetal acceleration is [tex]16.17\times10^{2}\ m/s^2[/tex]
(b). The magnitude of the net force is 232.9 N.