Respuesta :
Answer:
Step-by-step explanation:
[tex]V=\pi r^2*12=12\pi r^2\\V_{1}=\pi (\frac{1}{3} r)^2*12=\frac{4}{3} \pi r^2\\if ~you~want~to~compare~the~volumes,then \\\\\frac{V_{1}}{V} =\frac{\frac{4}{3}\pi r^2}{12 \pi r^2 } =\frac{1}{9} \\or~V_{1}=\frac{1}{9} V[/tex]
An expression for the volume of this cone is equal to [tex]\frac{4}{9r_1^2} \pi \;cm^3[/tex]
Given the following data:
Height of cone = 12 cm.
Radius, [tex]r_2[/tex] = [tex]\frac{1}{3} r_1[/tex] cm.
How to calculate the volume.
Mathematically, the volume of a cone is given by this formula:
[tex]V = \frac{1}{3} \pi r^2h[/tex]
Where:
- h is the height.
- r is the radius.
For cone 1:
[tex]V = \frac{1}{3} \times \pi r^2 \times 12\\\\V=4\pi r^2\;cm^3[/tex]
For cone 2:
[tex]V = \frac{1}{3} \times \pi (\frac{1}{3r_1} )^2 \times 12\\\\V=\frac{4}{9r_1^2} \pi \;cm^3[/tex]
Read more on radius here: brainly.com/question/21367171