Respuesta :

The quadratic function in vertex form is [tex]y=\frac{1}{2} (x-5)^{2}-2[/tex].

Solution:

The equation of a quadratic in  vertex form  is [tex]y=a(x-h)^{2}+k[/tex].

where  (h, k) are the coordinates of the vertex and "a"  is a multiplier.

Here (h, k) = (5, –2)

Substitute this in the vertex form.

[tex]y=a(x-5)^{2}+(-2)[/tex]

[tex]y=a(x-5)^{2}-2[/tex] – – – – (1)

Passes through the point (7, 0).

Here x = 7 and y = 0.

Substitute this in equation (1), we get

[tex]0=a(7-5)^{2}-2[/tex]

[tex]0=4a-2[/tex]

Add 2 on both sides.

2 = 4a

Divide 2 on both sides, we get

[tex]$a=\frac{1}{2}[/tex]

Substitute the value of a in equation (1),

[tex]$y=\frac{1}{2} (x-5)^{2}-2[/tex]

The quadratic function in vertex form is [tex]y=\frac{1}{2} (x-5)^{2}-2[/tex].