Respuesta :

Answer:

[tex]\sum_{i=1}^{12}(3i-1) = 222[/tex]

Step-by-step explanation:

The given series is

[tex]\sum_{i=1}^{12}(3i-1)[/tex]

The first term is

[tex]f(1) = 3 \times 1 - 1 = 2[/tex]

The last term is

[tex]f(12) = 3 \times 12 - 1 = 35[/tex]

To find the number of terms in the sequence, solve,

[tex]3i - 1 = 35[/tex]

[tex]3i = 36 \\ i = 12[/tex]

The sum of the first i-terms of an arithmetic sequence is:

[tex]S_i = \frac{i}{2} (f(1) + f(2))[/tex]

We substitute the values to get;

[tex]S_ {12}= \frac{12}{2} (2+ 35)[/tex]

[tex]S_ {12}=6(37)[/tex]

[tex]S_ {12}= 222[/tex]