Respuesta :

Space

Answer:

[tex]\displaystyle x = \frac{h - 2}{4} - 3y[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Terms/Coefficients

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle h = 4(x + 3y) + 2[/tex]

Step 2: Solve for x

  1. [Subtraction Property of Equality] Subtract 2 on both sides:                        [tex]\displaystyle h - 2 = 4(x + 3y)[/tex]
  2. [Division Property of Equality] Divide 4 on both sides:                                  [tex]\displaystyle \frac{h - 2}{4} = x + 3y[/tex]
  3. [Subtraction Property of Equality] Subtract 3y on both sides:                      [tex]\displaystyle \frac{h - 2}{4} - 3y = x[/tex]
  4. Rewrite:                                                                                                             [tex]\displaystyle x = \frac{h - 2}{4} - 3y[/tex]