A typical flying insect applies an average force equal to twice its weight during each downward stroke while hovering. Take the mass of the insect to be 7.0g , and assume the wings move an average downward distance of 1.5cm during each stroke. Assuming 117 downward strokes per second, estimate the average power output of the insect.

Respuesta :

Answer:

Average power output of insect is 2.42W

Explanation:

Workdone by constant force during displacement is given by:

W= F× d cos theta

Where theta is angle between F and d.

Power output due to the force over the interval time is given by:

P= Workdone/change in time

Ginen:

Mass of insect,m= 7.0g= 7/1000 = 0.07kg

Downward force applied by insect,F= 2mg

Distance moved by the wing each stroke=1.5cm=1.5/100= 0.015m

W= F× d cos theta

Where theta=0° since force is in the same direction as the displacement.

W= 2mg×d

W= 2× 0.07 × 9.8 × 0.015

W= 0.02058J

Power output = W/ change in time

Since wings make 117strokes each second time interval is 1/117 = 8.5×10^-3seconds

Power= 0.02058/(8.5×10^-3)

Power= 2.42W