In an arcade game a 0.117 kg disk is shot across a frictionless horizontal surface by compressing it against a spring and releasing it. If the spring has a spring constant of 194 N/m and is compressed from its equilibrium position by 7 cm, find th

Respuesta :

Find the speed with which the disk slides across the surface

Answer:

[tex]\boxed{2.85 m/s}[/tex]

Explanation:

The Potential energy of spring is transformed to kinetic energy hence

[tex]0.5kx^{2}=0.5mv^{2}\\kx^{2}=mv^{2}\\v=\sqrt{\frac {kx^{2}}{m}}[/tex]

Here k is the spring constant, x is the extension of spring, v is the velocity of disk and m is the mass of the disk.

Substituting 0.117 Kg for m, 194 N/m for k and 0.07 m for x then

[tex]v=\sqrt{\frac {194\times 0.07^{2}}{0.117}}=2.850401081 m/s\approx \boxed{2.85 m/s}[/tex]