Respuesta :

Answer:

The distance from N to T is :  [tex]\sqrt{29}[/tex]   or   (square root of 29)

Step-by-step explanation:

From the given the diagram

  • N(-2, -1)
  • T(3, 1)

[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

[tex]\mathrm{The\:distance\:between\:}\left(-2,\:-1\right)\mathrm{\:and\:}\left(3,\:1\right)\mathrm{\:is\:}[/tex]

[tex]=\sqrt{\left(3-\left(-2\right)\right)^2+\left(1-\left(-1\right)\right)^2}[/tex]

[tex]=\sqrt{\left(3+2\right)^2+\left(1+1\right)^2}[/tex]

[tex]=\sqrt{5^2+\left(1+1\right)^2}[/tex]

[tex]=\sqrt{5^2+2^2}[/tex]

[tex]=\sqrt{25+4}[/tex]

[tex]=\sqrt{29}[/tex]

Therefore, the distance from N to T is :  [tex]\sqrt{29}[/tex]   or   (square root of 29)

Answer:

it is the square root of 29

Step-by-step explanation: