Answer:
[tex]5 {y}^{2} - 80[/tex]
Step-by-step explanation:
The given polynomials are:
[tex]5 {y}^{2} - 80[/tex]
and
[tex]y + 4[/tex]
Let us factor the first polynomial to get:
[tex]5 {y}^{2} - 80 = 5( {y}^{2} - 16)[/tex]
We need to rewrite as difference of two squares:
[tex]5 {y}^{2} - 80 = 5( {y}^{2} - {4}^{2} )[/tex]
We can now factor to get:
[tex]5 {y}^{2} - 80 = 5( {y} - 4)(y + 4)[/tex]
So the least common multiple of
[tex]5( {y} + 4)(y - 4) \: and \: (y + 4) \: is \: 5( {y} + 4)(y - 4) = 5 {y}^{2} - 16[/tex]
l