Respuesta :

Answer:

[tex]5 {y}^{2} - 80[/tex]

Step-by-step explanation:

The given polynomials are:

[tex]5 {y}^{2} - 80[/tex]

and

[tex]y + 4[/tex]

Let us factor the first polynomial to get:

[tex]5 {y}^{2} - 80 = 5( {y}^{2} - 16)[/tex]

We need to rewrite as difference of two squares:

[tex]5 {y}^{2} - 80 = 5( {y}^{2} - {4}^{2} )[/tex]

We can now factor to get:

[tex]5 {y}^{2} - 80 = 5( {y} - 4)(y + 4)[/tex]

So the least common multiple of

[tex]5( {y} + 4)(y - 4) \: and \: (y + 4) \: is \: 5( {y} + 4)(y - 4) = 5 {y}^{2} - 16[/tex]

l