Respuesta :
Answer:
a) Parameter of interest [tex] p[/tex] representing the true proportion of the plates have blistered.
b) Null hypothesis:[tex]p\leq 0.1[/tex]
Alternative hypothesis:[tex]p > 0.1[/tex]
c) [tex]z=\frac{0.14 -0.1}{\sqrt{\frac{0.1(1-0.1)}{100}}}=1.33[/tex]
d) For this case we need to find a value in the normal standard distribution that accumulates 0.1 of the area in the right tail and for this case is:
[tex] z_{critc}= 1.28[/tex]
e) For this case since our calculated value is higher than the critical value 1.33>1.28 we have enough evidence to reject the null hypothesis and we can conclude that the true proportion is significantly higher than 0.1
f) [tex]p_v =P(z>1.33)=0.0917[/tex]
If we compare the p value and the significance level given [tex]\alpha=0.1[/tex] we see that [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 10% of significance the true proportion is higher than 0.1 or 10%
Step-by-step explanation:
Data given and notation
n=100 represent the random sample taken
Part a
Parameter of interest [tex] p[/tex] representing the true proportion of the plates have blistered.
X=14 represent the number of the plates have blistered.
[tex]\hat p=\frac{14}{100}=0.14[/tex] estimated proportion of the plates have blistered.
[tex]p_o=0.1[/tex] is the value that we want to test
[tex]\alpha=0.1[/tex] represent the significance level
Confidence=90% or 0.90
z would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value (variable of interest)
Part b: Concepts and formulas to use
We need to conduct a hypothesis in order to test the claim that more than 10% of all plates blister under such circumstances.:
Null hypothesis:[tex]p\leq 0.1[/tex]
Alternative hypothesis:[tex]p > 0.1[/tex]
When we conduct a proportion test we need to use the z statistic, and the is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].
Part c: Calculate the statistic
Since we have all the info requires we can replace in formula (1) like this:
[tex]z=\frac{0.14 -0.1}{\sqrt{\frac{0.1(1-0.1)}{100}}}=1.33[/tex]
Part d: Rejection region
For this case we need to find a value in the normal standard distribution that accumulates 0.1 of the area in the right tail and for this case is:
[tex] z_{critc}= 1.28[/tex]
Part e
For this case since our calculated value is higher than the critical value 1.33>1.28 we have enough evidence to reject the null hypothesis and we can conclude that the true proportion is significantly higher than 0.1
Part f
Since is a right taild test the p value would be:
[tex]p_v =P(z>1.33)=0.0917[/tex]
If we compare the p value and the significance level given [tex]\alpha=0.1[/tex] we see that [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 10% of significance the true proportion is higher than 0.1 or 10%