Respuesta :
Answer:
PD = 12[tex]\sqrt{3}[/tex]
Step-by-step explanation:
Using the tangent ratio in right Δ PDW and the exact value
tan30° = [tex]\frac{1}{\sqrt{3} }[/tex], then
tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{WD}{PD}[/tex] = [tex]\frac{12}{PD}[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross- multiply )
PD = 12[tex]\sqrt{3}[/tex]
Step-by-step explanation:
Using similarity it can be solved as:
[tex] In\:\triangle PDW\: \& \: \triangle CTW\\\\
\angle PDW \cong \angle CTW.... (each\:90 °) \\\\
\angle PWD \cong \angle CWT... (Vertical\:\angle s) \\\\
\therefore \triangle PDW\: \sim\: \triangle CTW\\
(by \:AA\: criterion \: of\: similarity) \\\\
\therefore \frac{PW}{CW} =\frac{WD}{WT}.. (csst) \\\\
\therefore \frac{PW}{6} =\frac{12}{3}\\\\
\therefore \frac{PW}{6} =4\\\\
\therefore PW=4\times 6\\\\
\huge \red {\boxed {\therefore PW=24}} \\\\
In\:\triangle PDW\:, \angle PWD = 60°\\\\
\therefore PD =\frac {\sqrt 3}{2} \times PW\\\\
\therefore PD =\frac {\sqrt 3}{2} \times 24\\\\
\huge \orange {\boxed {\therefore PD = 12\sqrt 3\: units}} [/tex]