Respuesta :

Answer:

[tex] { \cos}^{3} x[/tex]

Step-by-step explanation:

We want to simplify:

[tex] \frac{ \sin( \frac{\pi}{2} - x) }{ { \cot}^{2} ( \frac{\pi}{2} -1 ) + 1} [/tex]

Use the Pythagorean identity:

[tex] { \csc}^{2}x = { \cot}^{2}x + 1[/tex]

We apply this property to get:

[tex] \frac{ \sin( \frac{\pi}{2} - x) }{ { \csc}^{2} ( \frac{\pi}{2} -x) } [/tex]

This gives us:

[tex]\frac{ \sin( \frac{\pi}{2} - x) }{ \frac{1}{{ \sin}^{2} ( \frac{\pi}{2} -x)} } [/tex]

We simplify to get:

[tex]\sin^{3} ( \frac{\pi}{2} -x)[/tex]

[tex](\sin ( \frac{\pi}{2} -x))^{3}[/tex]

Apply the complementary identity;

[tex](\cos x)^{3} = { \cos}^{3} x[/tex]