Which equation is the inverse of y = 9x2 – 4? y = StartFraction plus-or-minus StartRoot x + 4 EndRoot Over 9 EndFraction y = plus-or-minus StartRoot StartFraction x Over 9 EndFraction + 4 EndRoot y = StartFraction plus-or-minus StartRoot x + 4 EndRoot Over 3 EndFraction y = StartFraction plus-or-minus StartRoot x EndRoot Over 3 EndFraction + two-thirds

Respuesta :

Option C: [tex]y=\pm\frac{\sqrt{x+4}}{3}[/tex] is the inverse of the function

Explanation:

The given function is [tex]y=9 x^{2}-4[/tex]

We need to determine the inverse of the function.

To determine the inverse of the function, we need to interchange the values of x and y and solve for y.

Let us interchange the variables x and y in the function [tex]y=9 x^{2}-4[/tex], we have,

[tex]x=9 y^{2}-4[/tex]

Adding both sides of the equation by 4, we have,

[tex]x+4=9 y^{2}[/tex]

Dividing both sides of the equation by 9, we have,

[tex]\frac{x+4}{9} =y^2[/tex]

Switch sides, we have,

[tex]y^2=\frac{x+4}{9}[/tex]

Taking square root on both sides of the equation, we have,

[tex]y=\pm\frac{\sqrt{x+4}}{3}[/tex]

Thus, the inverse of the function is [tex]y=\pm\frac{\sqrt{x+4}}{3}[/tex]

Therefore, Option C is the correct answer.

Answer:

C

Step-by-step explanation: