Answer:
Step-by-step explanation:
Let us assume that the test scores of the students were normally distributed. we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = test scores of students.
µ = mean test scores
σ = standard deviation
From the information given,
µ = 510
σ = 100
We want to find the probability that a student scored below 300. It is expressed as
P(x ≤ 300)
For x = 300
z = (300 - 510)/100 = - 2.1
Looking at the normal distribution table, the probability corresponding to the z score is 0.018
Therefore, the percentage of students that scored below 300 is
0.018 × 100 = 1.8%